Performance Comparison of Conventional Synchronous Reluctance Machines and PM-Assisted Types with Combined Star–Delta Winding

نویسندگان

  • Mohamed Nabil Fathy Ibrahim
  • Essam Rashad
  • Peter Sergeant
چکیده

This paper compares four prototype Synchronous Reluctance Motors (SynRMs) having an identical geometry of iron lamination stacks in the stator and rotor. Two different stator winding layouts are employed: a conventional three-phase star connection and a combined star–delta winding. In addition, two rotors are considered: a conventional rotor without magnets and a rotor with ferrite magnets. The performance of the four SynRMs is evaluated using a two-dimensional (2D) Finite Element Model (FEM). For the same copper volume and current, the combined star–delta-connected stator with Permanent Magnets (PMs) in the rotor corresponds to an approximately 22% increase in the output torque at rated current and speed compared to the conventional machine. This improvement is mainly thanks to adding ferrite PMs in the rotor as well as to the improved winding factor of the combined star–delta winding. The torque gain increases up to 150% for low current. Moreover, the rated efficiency is 93.60% compared to 92.10% for the conventional machine. On the other hand, the impact on the power factor and losses of SynRM when using the star–delta windings instead of the star windings is merely negligible. The theoretical results are experimentally validated using four identical prototype machines with identical lamination stacks but different rotors and winding layouts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Design Procedure and Manufacturing of Permanent Magnet Assisted Synchronous Reluctance Motor

Combining the main advantages of the permanent magnet synchronous motors and pure synchronous reluctance motors (SynRM), permanent magnet assisted synchronous reluctance motor (PMaSynRM) has been considered as a promising alternative to the conventional induction motors. In this paper, utilizing a macroscopic design parameter, called insulation ratio along the q-axis, and based on the magnetic ...

متن کامل

Design and Performance Evaluation of a Medium Power Pm-assisted Reluctance Synchronous Traction Machine Using Bonded Pm-sheets

This paper describes the optimum design of a permanent-magnet-assisted reluctance rotor of a 110 kW reluctance synchronous traction machine. Previous studies show that the performance of the pure reluctance synchronous machine drive deteriorates fast in the flux-weakening speed region. To address this problem, thin bonded permanent-magnet sheet material is used inside the flux barriers of the r...

متن کامل

Design and Rotor Geometry Analysis of Permanent Magnet–assisted Synchronous Reluctance Machines Using Ferrite Magnet

Various electric machines can be the candidate for electric vehicles applications, including induction machines, permanent magnet synchronous machines, switched reluctance machines, etc. Another class of machine, which has been relatively ignored, is synchronous reluctance machines. In order to enhance and increase torque density of pure synchronous reluctance machines, the low cost permanent m...

متن کامل

Investigation of the dq -Equivalent Model for Performance Prediction of Flux-Switching Synchronous Motors With Segmented Rotors

Investigation of the dq-Equivalent Model for Performance Prediction of Flux-Switching Synchronous Motors With Segmented Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Zulu, B. C. Mecrow, and M. Armstrong 2393 Modeling and Parametric Design of Permanent-Magnet AC Machines Using Computationally Efficient Finite-Element Analysis . . . . . . . . . . . . . . . . ...

متن کامل

Design and Comparison of Different Switched Reluctance Machines Topologies for Automotive Applications

The present paper approaches the comparative design and analysis of 5 SRM topologies for an EPAS application. Different number of phases and different combination of stator and rotor pole number will be considered, keeping the same main dimensions (outer and inner stator diameter, airgap length, stack length, stator pole height, stator yoke width, rotor pole height) and the same winding per pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017